
1

Wait,	what	is	a	Dapp?
Dapps are	distributed	apps.	These	are	the	applications	that	run	on	top	of	blockchains
like	ethereum and	are	written	in	languages	like	Solidity

2

I	just	want	to	make	it	clear	that	this	is	an	intermediate	level	of	tech	talk.

I’m	going	to	assume	that	you	have	some	knowledge	of	how	blockchains work,	even	if	
you	don’t	know	the	inner	workings	of	blockchain technologies,	you	should	be	able	to	
able	to	follow	this	talk

As	the	title	says,	here	are	the	things	we	won’t	talk	about.

Hashing,	Mining	I	expect	you	to	have	an	understanding	of	this.

And	I’m	not	going	to	talk	about	any	alt-coins,	ICOs,	tokens	and	other	applications

3

With	that,	let’s	look	at	what	we	will	talk	about	today.

1. I’ll	go	into	what	a	programmable	blockchain
2. What	ethereum is	and	how/why	it	came	about
3. A	small	intro	to	Solidity
4. Then	we	will	jump	into	building	a	Dapp
5. And	finally	conclude	with	how	we	can	go	beyond	ethereum

6. With	that	let’s	get	started	with	the	first	topic	of	our	talk

4

The	programmable	blockchain,	before	we	get	into	that,	let’s	look	at	what	a	blockchain
means

5

Before	we	get	into	what	a	programmable	blockchain,	let’s	look	at	what	a	blockchain is

A	blockchain is	a	bunch	of	transactions	that	are	validated	and	grouped	together	into	
blocks	that	are	chained	sequentially	and	are	secured	using	cryptography	to	maintain	
an	immutable	history

Apart	from	the	transactions,	the	blocks	typically	contain	the	timestamp	info	and	a	
hash	of	the	previous	block

6

Quite	simply,	the	ability	to	execute	some	programs	on	the	blockchain…

These	programs	can	be	simple	scripts.

The	simplest	and	the	most	basic	example	is	validating	transactions

You	can	have	other	programs	that’d	perform	certain	actions	when	certain	conditions	
have	been	met.

For	example,	you	can	have	a	company	that	pays	it’s	employees	through	
cryptocurrency,	where	the	money	is	transferred	from	the	company’s	payroll	account	
to	the	employee	account	on	the	first	of	every	month

7

Before	we	answer	the	question	of	whether	bitcoin	is	a	programmable	blockchain,	
why	should	we	even	talk	about	bitcoin?

Well,	because	bitcoin	is	the	first	blockchain protocol.	So,	is	it	programmable?

8

Yes	it	is.

Bitcoin	is	programmable	through	its	transactions.	Transactions	in	bitcoin	are	small	
programs	and	most	of	them	do	stuff	like	"relase the	bitcoin	from	this	address	to	
address	X		when	provided	with	the	public	key	for	X	and	a	signature	proving	
possession	of	the	private	key	for	this	address”

What	this	does	is,	it	validates	the	public	and	private	keys	and	releases	the	bitcoins	to	
the	new	address.

9

- Great	right,	but	there’s	more	to	this…
- Even	though	Bitcoin	is	programmable,	it	is	not	turing complete.
- The	bitcoin	transactions	as	I	said	are	simple	scripts	that	get	executed.
- These	scripts	are	written	using	the	language,	bitcoin	script.	It	is	a	stack	based	

language	that	isn't	turing complete.	
- Specifically	there	are	no	loops	in	bitcoin	script....
- Wait,	what?	Why?	Why	do	we	want	to	handicap	a	language?	Loops	are	great,	we	

can	iterate	and	do	a	lot	of	cool	stuff,	right?
- But...	loops	can	also	be	dangerous.	The	main	idea	of	blockchains is	to	have	a	

distributed	network	that	validates	transactions,	create	blocks	and	maintain	the	
entire	blockchain.This means	that	the	transaction	scripts	are	running	on	miners'	
machines	all	across	the	globe

- Because	of	the	distributed	nature	of	the	protocol,	this	poses	a	unique	challenge.
- If	the	bitcoin	script	was	turing complete	you	could	have	scripts	that	are	fairly	small	

but	would	take	a	long	time	to	run.	Let's	say	there's	an	infinte loop	in	your	script,	
that'd	mean	the	miners'	resources	are	tied	up	.	

- This	would	render	a	denial	of	service	attack	against	everyone	on	the	network	
when	they	try	to	verify	the	transaction.Instead,	if	we	make	our	script	turing
incomplete	by	avoiding	loops,	that	provides	us	this	functionality	without	the	

10

complexity.

10

- This	means	we	have	this	network	of	distributed	computing	power	that	is	running	
all	the	time,	all	across	the	world,	that	is	intentionally	limited	in	its	capability.

- Is	there	a	way	to	remove	this	limitation	and	get	the	benefits	of	this	vast	computing	
power?

11

Answering	that	question	brings	us	to	the	next	segment	of	our	talk

12

- Ethereum	is	the	ultimate	abstraction	of	the	blockchain
- It	was	proposed	by	the	then	19	year	old	vitalik buterin in	2013.
- The	idea	behind	ethereum as	his	quote	says	is	for	it	to	be	a	blockchain with a
built-in Turing-complete programming language, allowing anyone to
write smart contracts and decentralized applications

- There’s more to Ethereum than what’s included in this quote, let’s
go over the important compnonents

13

- Ether is	the	currency	of	the	Ethereum	network.	Ether	has	a	currency	value	and	is	
currently	at	~900$.

- This	is	the	incentive	that	Miners	get	for	creating	blocks	on	the	Ethereum	
blockchain

14

- Accounts	represent	identities	of	external	agents.
- Accounts	use	public	key	cryptography	to	sign	transaction	so	that	the	EVM	can	

securely	validate	the	identity	of	a	transaction	sender.
- There	are	two	types	of	accounts	

- Externally Owned	accounts	– has	balance,	owned	by	humans,	has	no	
associated	code	and	can	send	transactions

- Contract	accounts	– has	balance,	has	code	associated	with	it,	that	gets	
triggered	by	transactions	and	can	call	other	contracts

15

- A	contract	is	a	collection	of	code	(its	functions)	and	data	(its	state)	that	resides	at	a	
specific	address	on	the	Ethereum	blockchain.

- Contracts	are	typically	written	in	some	high	level	language	such	as	Solidity and	
then	compiled	into	bytecode	to	be	uploaded	on	the	blockchain.

16

- Contracts	live	on	the	blockchain in	a	Ethereum-specific	binary	format	called	
Ethereum	Virtual	Machine	(EVM)	bytecode.

- The	Ethereum	Virtual	Machine	or	EVM	is	the	runtime	environment	for	smart	
contracts	in	Ethereum.

- It	is	not	only	sandboxed	but	actually	completely	isolated,	which	means	that	code	
running	inside	the	EVM	has	no	access	to	network,	filesystem	or	other	processes.	

- EVM is	kinda like	JVM,	many	of	you	must	be	familiar	with	it.
- All	the	JVM	does	is,	it	executed	this	bytecode	that	was	compiled	from	a	high	level	

language,	like	solidity

17

- Contracts	live	on	the	blockchain in	a	Ethereum-specific	binary	format	called	
Ethereum	Virtual	Machine	(EVM)	bytecode.

- EVM is	kinda like	JVM,	many	of	you	must	be	familiar	with	it.
- All	the	JVM	does	is,	it	executed	this	bytecode	that	was	compiled	from	a	high	level	

language,	like	solidity

18

- Along	with	the	concepts	that	we	just	spoke about,	let’s	take	a	look	again	at	
Buterin’s quote	again

- The	thing	I’d	like	you	to	pay	attention	to	is	that	this	supports	Turing-complete	
languages

- Turing-complete	languages	like	Solidity,	that	support	loops
- But	we	learned	from	earlier	that	there’s	a	problem	when	there	are	loops	which	

bitcoin	altogether	avoids,	that	problem	is..

19

20

21

22

23

- Well,	that	is	where	the	ingenuity	of	Ethereum	shines	through
- You	see,	the	problem	with	infinite	loops	or	computations	that	take	really	long	for	

miners	is	that	their	computation	power	is	wasted	and	they	do	not	get	any	reward	
for	running	these	programs.

- Well,	what	if	the	miner	gets	paid	for	running	your	transactions	and	they	charge	you	
for	running	your	scripts?

- That’s	sounds	reasonable	right?
- Cool,	let’s	see	how	ethereum does	it

24

- Gas	is	an	interesting	concept	that	ensures	that	the	miners	are	compensated	for	
providing	the	computational	resources	while	the	users	stay	responsible	for	their	
programs

25

- Gas	is	an	interesting	concept	that	ensures	that	the	miners	are	compensated	for	
providing	the	computational	resources	while	the	users	stay	responsible	for	their	
programs

- Ethereum	allows	arbitrarily	complex	computer	code	to	be	run,	a	short	length	of	
code	can	actually	result	in	a	lot	of	computational	work	being	done.	

- So	it's	important	to	measure	the	work	done	directly	instead	of	just	choosing	a	fee	
based	on	the	length	of	a	transaction	or	contract.

- Although	gas	is	a	unit	that	things	can	be	measured	in,	there	isn't	any	actual	token	
for	gas.	

- That	is,	you	can't	own	1000	gas.	Instead,	gas	exists	only	inside	of	the	Ethereum	
virtual	machine	as	a	count	of	how	much	work	is	being	performed.	

- When	it	comes	to	actually	paying	for	the	gas,	the	transaction	fee	is	charged	as	a	
certain	number	of	ether,	the	built-in	token	on	the	Ethereum	network	and	the	
token	with	which	miners	are	rewarded	for	producing	blocks.

26

- Gas	is	the	way	that	fees	are	calculated
- The	fees	are	still	paid	in	ether,	though,	which	is	different	from	gas
- The	gas	cost	is	the	amount	of	work	that	goes	into	something,	like	the	number	of	

hours	of	labour,	whereas	the	gas	price	is	like	the	hourly	wage	you	pay	for	the	work	
to	be	done.	

- The	combination	of	the	two	determines	your	total	transaction	fee.
- If	your	gas	price	is	too	low,	no	one	will	process	your	transaction
- If	your	gas	price	is	fine	but	the	gas	cost	of	your	transaction	runs	"over	budget"	the	

transaction	fails	but	still	goes	into	the	blockchain,	and	you	don't	get	the	money	
back	for	the	work	that	the	labourers did.

- This	makes	sure	that	nothing	runs	forever,	and	that	people	will	be	careful	about	
the	code	that	they	run.	

- It	keeps	both	miners	and	users	safe	from	bad	code!

- https://ethereum.stackexchange.com/questions/3/what-is-meant-by-the-term-gas

27

Answering	that	question	brings	us	to	the	next	segment	of	our	talk

28

- Solidity	is	a	contract-oriented,	high-level	language	for	implementing	smart	
contracts.

- It	was	influenced	by	C++,	Python	and	JavaScript	and	is	designed	to	target	the	
Ethereum	Virtual	Machine	(EVM).

- Solidity	is	statically	typed,	supports	inheritance,	libraries	and	complex	user-defined	
types	among	other	features.

- Like	objects	in	OOP,	each	contract	contains	state	variables,	functions,	and	common	
data	types.

- Contract-specific	features	include	modifier	clauses,	event	notifiers for	listeners,	
and	custom	global	variables.

29

- All	solidity	source	code	should	start	with	a	"version	pragma"	— a	declaration	of	the	
version	of	the	Solidity	compiler	this	code	should	use.	

- This	is	to	prevent	issues	with	future	compiler	versions	potentially	introducing	
changes	that	would	break	your	code.

- 'contract'	has	similarities	to	'class'	in	other	languages	(class	variables,inheritance,	
etc.)

- Variable	declared	outside	functions	are	global	to	the	contract

- 'public'	makes	externally	readable	(not	writeable)	by	users	or	contracts	and	is	the	
default	mode.	External,	Internal,	Inherited,	Private

- ‘constant’	here	specifies	that	the	function	doesn’t	alter	the	state	and	so	there’s	no	
need	to	spend	gas	and	doesn’t	need	gas	to	be	spent

30

- Bool,	integer,	string,	byte	types	both	signed	and	unsigned	with	various	bit	widths	
and	addresses	of	160	bits	width

- Fixed	and	Dynamically	sized	arrays	are	available,	so	are	user	defined	structs.
- Ether	and	Time	units

- wei, finney, szabo or ether	are	the	currency	types.	Wei	is	the	minimum	
unit.	10^18	wei =	ether

- seconds, minutes, hours, days, weeks and years are	the	time	units.	It	
works	a	little	naviely,	by	converting	1	year	to	365	days.

31

- It	also	supports	a	lot	of	control	structures	like	
if, else, while, for, break, continue, return.	No	switch	or	go	to

32

- block	info,	msg info,	tx info	can	be	gotten	through	variables.	Cryptographic	
function	for	hashing	like	sha3,	sha256,	etc are	also	available.

- Things	like	the	block	difficulty,	block	gas	limit,	blockhash
- Address	of	the	msg sender,	etc

33

- Solidity	supports	multiple	inheritance	by	copying	code	including	polymorphism

34

- Contract	functions	can	lack	an	implementation
- Such	contracts	cannot	be	compiled	(even	if	they	contain	implemented	functions	

alongside	non-implemented	functions),	but	they	can	be	used	as	base	contracts
- If	a	contract	inherits	from	an	abstract	contract	and	does	not	implement	all	non-

implemented	functions	by	overriding,	it	will	itself	be	abstract.

35

- Fallback	Function	- A	contract	can	have	exactly	one	unnamed	function.	This	
function	cannot	have	arguments	and	is	executed	on	a	call	to	the	contract	if	none	of	
the	other	functions	matches	the	given	function	identifier

- Function	modifiers	- Modifiers	can	be	used	to	easily	change	the	behaviour of	
functions,	for	example	to	automatically	check	a	condition	prior	to	executing	the	
function.	They	are	inheritable	properties	of	contracts	and	may	be	overridden	by	
derived	contracts.

36

- Events are	a	way	for	your	contract	to	communicate	that	something	happened	on	
the	blockchain to	your	app	front-end,	which	can	be	'listening'	for	certain	events	
and	take	action	when	they	happen

37

38

• DApp is	an	abbreviated	form	for	decentralized	application.
• A	DApp has	its	backend	code	running	on	a	decentralized	peer-to-peer	network.	

This	is	different	from	an	app	where	the	backend	code	is	running	on	centralized	
servers.

• A	DApp can	have	frontend	code	and	user	interfaces	written	in	any	language	(just	
like	an	app)	that	can	make	calls	to	its	backend.	Furthermore,	its	frontend	can	be	
hosted	on	decentralized	storage	such	as	Swarm or	IPFS,	but	in	our	case

39

• Let’s	take	a	look	at	what	we	need	for	the	smart	contract
• We need	the	infrastructure	to	run	our	smart	contract,	we	know	it’ll	run	on	the	

Ethereum	blockchain
• We	know	the	language	we	are	going	to	write	our	contract	in
• We	need	an	IDE	to	write	our	code	in.	Solidity	is	supported	by	a	lot	of	editors	like	vs	

code,	eclipse,	or	the	greatest	editor	ever	vim

40

• Let’s	take	a	look	at	what	we	need	for	the	smart	contract
• We need	the	infrastructure	to	run	our	smart	contract,	we	know	it’ll	run	on	the	

Ethereum	blockchain
• We	know	the	language	we	are	going	to	write	our	contract	in
• We	need	an	IDE	to	write	our	code	in.	Solidity	is	supported	by	a	lot	of	editors	like	vs	

code,	eclipse,	or	the	greatest	editor	ever	vim

41

• Let’s	take	a	look	at	what	we	need	for	the	smart	contract
• We need	the	infrastructure	to	run	our	smart	contract,	we	know	it’ll	run	on	the	

Ethereum	blockchain
• We	know	the	language	we	are	going	to	write	our	contract	in
• We	need	an	IDE	to	write	our	code	in.	Solidity	is	supported	by	a	lot	of	editors	like	vs	

code,	eclipse,	or	the	greatest	editor	ever	vim
• but	for	our	purposes,	we	are	going	to	go	with	remix

42

- The	other	thing	we	need	is	a	browser	that	will	interact	with	the	ethereum
blockchain,	there	are	some	browsers	like	brave dedicated	to	this,	but	we	will	be	
using	the	metamask chrome	plugin	which	will	communicate	with	the	blockchain
for	us

43

- web3 which	is	a	javascript library	that	lets	you	perform	many	Ethereum	functions

44

• I’m	using Infura as	my	fallback	“provider”	and	as	far	as	I	understand,	they	are	
providing	the	infrastructure	required	to	connect	with	the	blockchain,	read/modify	
it,	etc.	The	fallback	provider	allows	people	who	don’t	have	tools	like	MetaMask to	
at	least	read	the	contract	state.

• abiArray is	the	Contract	Application	Binary	Interface	(ABI)	which	is	basically	a	
description	of	the	function	methods	and	variables.	If	you	go	to	the	code	tab	on	
Etherscan,	you	can	find	the	ABI

• There	are	probably	a	few	things	that	are	confusing	here,	such	as	“wei”	and	
BigNumber.	

• As	I	mentioned	earlier,	10¹⁸	wei =	1	ETH.	Smart	contracts	always	transact	with	wei,	
and	wei is	the	smallest	possible	unit	of	ETH.	

• Since	these	numbers	are	huge,	we	need	the	BigNumber library	to	handle	them	
properly.	

• First,	I	converted	the	user	provided	ETH	number	into	wei.	Then,	I	created	

45

a transactionObject which	contains	the	value	parameter.	Finally,	I	called	addUser
with	the	supplied	string	and	transaction	info.

45

46

47

Answering	that	question	brings	us	to	the	next	segment	of	our	talk

48

What	about	the	problems	or	pitfalls

49

• There	are	a	couple	of	issues	with	smart	contracts	and	they	are	immutability	and	
correctness

• The	contract	we	published	has	a	bug
• There	is	no	way	to	change	this	contract	now,	we	will	have	to	publish	a	new	

contract	to	correct	this
• Because	of	this	correctness	is	a	really	important	thing

50

Alright	we	can	now	go	on	to	the	next	segment

51

- There	are	alternatives	to	Ethereum	to	build	applications
- Of	course	I’m	not	mentioning	stuff	like	hyperledger,	fabric,	corda,	etc.,	but	you	get	
the	idea

52

• Dapp	is	a	simple	command	line	tool	for	smart	contract	development
• simple,	flexible	building-blocks	for	smart-contract	systems
• Truffle	is	a	development	framework
• Ember	Framework	for	serverless Decentralized	Applications	using	Ethereum,	IPFS	

and	other	platforms

53

54

Alright	we	can	now	go	on	to	the	next	segment

55

